On Solvable Congruences in Finitely Decidable Varieties

نویسنده

  • Matthew Valeriote
چکیده

In this paper we establish the (1, 2) and (2, 1)-transfer principles for finitely decidable locally finite varieties. A class of structures is finitely decidable if the first order theory of its finite members is recursive. A variety is a class of algebras which is axiomatizable by a set of equations. The transfer principles deal with the local structure of finite algebras and have strong global consequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely Decidable Congruence Modular Varieties

A class TZ~ of algebras of the same type is said to be finitely decidable iff the first order theory of the class of finite members of 'V is decidable. Let y be a congruence modular variety. In this paper we prove that if "V is finitely decidable, then the following hold. (1) Each finitely generated subvariety of 2^ has a finite bound on the cardinality of its subdirectly irreducible members. (...

متن کامل

Principal and Syntactic Congruences in Congruence-distributive and Congruence-permutable Varieties

We give a new proof that a finitely generated congruence-distributive variety has finitely determined syntactic congruences (or equivalently, term finite principal congruences), and show that the same does not hold for finitely generated congruence-permutable varieties, even under the additional assumption that the variety is residually very finite. 2000 Mathematics subject classification: 08B10.

متن کامل

Minimal Sets and Varieties

The aim of this paper is twofold. First some machinery is established to reveal the structure of abelian congruences. Then we describe all minimal, locally finite, locally solvable varieties. For locally solvable varieties, this solves problems 9 and 10 of Hobby and McKenzie. We generalize part of this result by proving that all locally finite varieties generated by nilpotent algebras that have...

متن کامل

A Variety with Solvable, but Not Uniformly Solvable, Word Problem

In the literature two notions of the word problem for a variety occur. A variety has a decidable word problem if every finitely presented algebra in the variety has a decidable word problem. It has a uniformly decidable word problem if there is an algorithm which given a finite presentation produces an algorithm for solving the word problem of the algebra so presented. A variety is given with f...

متن کامل

A Characterization of Decidable Locally Finite Varieties

We describe the structure of those locally finite varieties whose first order theory is decidable. A variety is a class of universal algebras defined by a set of equations. Such a class is said to be locally finite if every finitely generated member of the class is finite. It turns out that in order for such a variety to have a decidable theory it must decompose into the varietal product of thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 1994